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Abstract. We study the theoretical accuracy of various methods that have been proposed to measure the
luminosity of the LHC pp collider, as well as for Run II of the Tevatron pp̄ collider. In particular we consider
methods based on (i) the total and forward elastic data, (ii) lepton-pair production and (iii) W and Z
production.

1 Introduction

The Large Hadron Collider (LHC) being constructed at
CERN, will generate proton-proton collisions with total
c.m. energy of 14 TeV with a design luminosity L = 1034

cm−2 s−1. The experiments at this new facility will have
a high potential to discover New Physics and to make var-
ious precision measurements, see, for example [1,2]. Both
the general purpose pp experiments, ATLAS [3] and CMS
[4], will provide high statistics data samples, and the ac-
curacy of the precision measurements will be limited by
systematic effects and, in many cases, by the uncertainty
in the measurement of the luminosity L. For example, pre-
cision measurements in the Higgs sector of typical accu-
racy of about 7%, for a wide range of possible Higgs mass,
require the uncertainty in the luminosity to be ≤ 5% [2].
Both LHC experiments are aiming at measuring the lu-
minosity to 5%. Recall also that the enhancement in lu-
minosity that will be achieved in Run II of the Fermilab
Tevatron pp̄ - collider will herald a new era of precision
studies [5–7].

An obvious requirement for the success of these preci-
sion measurements is that the uncertainties in the theo-
retical calculations of the cross sections for the basic pro-
cesses, which are to be used to determine the luminosity,
should match the desired experimental accuracies.

In general, there are two possibilities to determine the
luminosity – either (i) to measure a pair of cross sections
which are connected quadratically with each other, or (ii)
to measure a cross section whose value is well known or
which may be calculated with good accuracy. The well-
known example of the first possibility is the measurement
of the total σtot and differential forward elastic cross sec-
tions which are related by the optical theorem; see, for
example, [5,8] for recent experimental discussions. This
method is discussed further in Sect. 2.

Two types of processes stand out as examples of the
second possibility to measure the luminosity. First there is
exclusive lepton-pair production via photon-photon fusion

p
(−)
p → p + l+l− +

(−)
p (1)

where l = e or µ. To the best of our knowledge this pro-
posal originated in [9]. A luminometer for the LHC based
on measuring forward e+e− pairs (of invariant massMee <
10 − 20 MeV and transverse momentum pt(ee) < 10 − 20
MeV) was proposed in [10], while [11] concerns the cen-
tral production of µ+µ− pairs (with 〈Mµµ〉 ∼ 20 GeV
and pt(µµ) ∼ 10–50 MeV). Lepton-pair production is the
subject of Sect. 3.

Nowadays attention has also focussed onW and Z pro-
duction as a possible luminosity monitor, both for Run II
at the Tevatron and for the LHC see, for example, [12].
The reason is that the signal is clean, and the production
cross sections are large and can now be calculated with
considerable theoretical accuracy. We discuss this possi-
bility further in Sect. 4.

In principle, we may monitor the luminosity using any
process, with a significant cross section, which is straight-
forward to detect. For example, it could be single- (or
two-) pion inclusive production in some rapidity and pt

domain (for example pt = 5 − 10 GeV; |η| < 1) or inclu-
sive µ+µ− production in a well-defined kinematic domain,
etc. In this way we may control the relative luminosity and
then calibrate the “monitor” by comparing the number of
events detected for the “monitor” reaction with the num-
ber of events observed for a process with a cross section
which is already known, or which may be calculated with
sufficient accuracy.

For some applications better accuracy can be achieved
by measuring the parton-parton luminosity. A discussion
is given in Sect. 5. Finally, Sect. 6 contains our conclusions.
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2 Elastic scattering

First we discuss the classic method to measure the lumi-
nosity, that is using the observed total and forward elastic
pp (or pp̄) event rates. Neglecting Coulomb effects1, the
elastic cross section is given by

dσel

dt

∣∣∣∣
t=0

=
σ2

tot

16π
(1 + ρ2). (2)

The ratio ρ of the real to the imaginary parts of the for-
ward amplitude is small at Tevatron-LHC energies and
can be estimated via dispersion relation techniques

ρ 	 π

2
∂ lnσtot(s)

∂ ln s
. (3)

For example, at the LHC energy,
√
s = 14 TeV, it is pre-

dicted to be ρ = 0.10−0.12; for a recent estimate, see, for
example, [15]. Even the largest conceivable uncertainty in
ρ, that is ∆ρ = ±0.02, leads only to an uncertainty of less
than 0.5% in dσel/dt. Thus if we measure the number of
events corresponding to the elastic scattering and to the
total cross section, then we may determine both the lumi-
nosity L and σtot (since Nel ∝ σ2

t L, whereas Ntot ∝ σtL).
The main problem in that it is extremely difficult to make
measurements at the LHC in the very forward region, and
so it is necessary to extrapolate elastic data from, say,
|t| � 0.01 − 0.02 GeV2 [8] to t = 0.

On the other hand it was found at the ISR that the
observed ‘local’ slope

B(t) ≡ d ln(dσel/dt)
dt

(4)

depends on t. In particular at
√
s = 62 GeV [16]

∆B = B(0) −B(|t| = 0.2 GeV2) 	 2 GeV−2. (5)

Note that if this t dependence were to be solely due to
a non-linear Pomeron trajectory [17], then the difference
(5) would increase as the logarithm of the energy (ln s);
giving, for example, ∆B 	 4.8 GeV−2 at the LHC energy.
The t-dependence of the local slope B(t) has recently been
determined [15] using a model which incorporates all the
main features of high energy soft diffraction. That is the
model embodies

(a) the pion-loop contribution to the Pomeron pole (which
is the main source of the non-linearity of the Pomeron
trajectory αP(t)),

1 Strictly speaking, we have to use Coulomb wave functions,
rather than plane waves, for the in- and out-states for elas-
tic scattering between electrically charged protons. To account
for this effect, the strong interaction amplitude Ael should
be multiplied by the well-known Bethe phase [13] (Ael →
exp(iδB)Ael). The uncertainty in Bethe phase δB due to the
non-point-like structure (electric charge distribution) of the
proton is about α = 1/137. It leads to an uncertainty of about
±0.01 in the Re/Im ratio, and hence to less than a 0.1% cor-
rection for the imaginary part of the strong amplitude Ael. A
recent discussion of the Coulomb phase for t �= 0 can be found
in [14]

(b) a two-channel eikonal to include the Pomeron cuts
which are generated by elastic and quasi-elastic (with
N∗ intermediate states) s-channel unitarity,

(c) the effects of high-mass diffractive dissociation.

The parameters of the model are α(0) and α′ of the
bare Pomeron trajectory, two parameters describing the
elastic proton-Pomeron vertex, and the triple-Pomeron
coupling and its slope [15]. The values of the parame-
ters were tuned to describe the observed pp (or pp̄) elas-
tic differential cross sections throughout the ISR-Tevatron
range, restricting the description to the forward region
|t| < 0.5 GeV2. Note that there are two effects, lead-
ing to a t dependence of B, which act in opposite direc-
tions. First, the non-linear pion-loop contributions [17] to
the Pomeron trajectory, ∆αP(t), lead to a contribution
∆BP(t) = ∆αP(t) ln s in single Pomeron exchange, which
increases as |t| → 0. On the other hand the absorptive
(rescattering) corrections, associated with eikonalization,
lead to a dip in dσel/dt (whose position moves to smaller
|t| as the collider energy,

√
s, increases), with the result

that the local slope B(t) grows as −t approaches the po-
sition of the diffractive minimum; that is B(t) decreases
as |t| → 0. Fortunately, just at the LHC energy, these two
effects almost compensate each other.

So far it has proved impossible to sum up in a consis-
tent way all the multi-Pomeron diagrams. For this reason
two versions of the model were studied in [15] with max-
imal and minimal contributions from high-mass diffrac-
tive dissociation. After tuning the values of the param-
eters to describe the σtot and the forward dσel/dt data,
the two versions of the model predict different values of
the slope at t = 0, B(0). The maximal choice gives a
larger value B(0) = 21.9 GeV−2, while for the minimal
case we obtain B(0) = 20.3 GeV−2. However in both
cases the variation of B(t) satisfies ∆B < 0.2 GeV−2

for |t| < 0.1 GeV2, or ∆B < 0.1 GeV−2 for the more
restricted interval 0 < |t| < 0.02 GeV2. It means that
we may neglect such a small variation of B(t) with t and
safely extrapolate the observed cross section dσel/dt down
to t = 0, using the slope measured, say, in the interval
0.01 < |t| < 0.05 GeV2. The error, due to the variation
of B with t, is expected to be less than ∆B · |t| � 0.2%.
Even if the cross section measured in the larger t inter-
val (0.05 < |t| < 0.15 GeV2) is extrapolated to t = 0,
the variation due to the behaviour of the local slope B(t)
gives an uncertainty of less than 3%.

In the very forward region, |t| ∼ 0.01 − 0.02 GeV2, it
may only be possible to measure the elastic cross section
in an LHC run with a rather low luminosity. For the high
luminosity runs one would then have to use another mon-
itor. One possibility is to choose a single particle inclusive
process, with a significant cross section, and “calibrate”
it in the low luminosity run by comparing with the to-
tal and elastic cross sections discussed above. It would be
even better if we were able to calibrate several different
reactions. Then to use, as a luminosity monitor, the reac-
tion with the closest topology (or kinematic configuration)
to the process that we are to study in the high luminosity
run.
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Fig. 1. a ∆+ production mediated by photon exchange, and
b possible rescattering corrections
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Fig. 2. a π0 production mediated by photon exchanges and
b two of the possible rescattering corrections
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Fig. 3. a Lepton pair production in pp collisions, b one of
the rescattering corrections, and c a possible contamination
coming from proton dissociation into X, Y systems

3 Lepton pair production as a luminometer

At first sight any QED process, with sufficient event rate,
may be used as a luminosity monitor. Up to ISR ener-
gies the luminosity was measured via Coulomb elastic pp
scattering, where at very small |t| the influence of the dom-
inant single photon exchange contribution is evident. Un-
fortunately, in the LHC environment, the Coulomb inter-
ference region, |t| � (1 − 3) × 10−4 GeV2 is not likely to
be experimentally accessible.

Other possibilities to consider are ∆ isobar Coulomb
excitation, (pp → ∆+p), or π0 and η production, which are
all mediated by photon exchange, as shown in Figs. 1a and
2a respectively. Surprisingly, the electromagnetic widths
∆+ → pγ, π0 → γγ and η → γγ are known only to 7–10%
accuracy [18]. Moreover, strong interaction effects in the
initial and final states give non-negligible corrections, see
Figs. 1b and 2b.

Lepton pair production looks much more promising
as a luminosity monitor. The Born amplitude of Fig. 3a
may be calculated within pure QED (see, for example,
the reviews in [19]), and there are no strong interactions
involving the leptons in the final state. The only ques-
tion is the size of the absorptive corrections arising from
inelastic proton-proton rescattering, sketched in Fig. 3b.
Fortunately the rescattering correction is suppressed for
two reasons. First, the main part of the Born cross sec-
tion (Fig. 3a) comes from the peripheral region with large
impact parameter bt, where the strong amplitude A(s, bt)
is small. Second, even in the small bt domain, the rescat-

tering correction is greatly suppressed due to the angular
integration.

Before we discuss the last point, we note that, in prac-
tice, it is difficult to exclude contributions coming from
the reactions

pp → X + l+l− + p

pp → X + l+l− + Y (6)

where X and Y are baryon excitations, that is N∗ or ∆
isobars. Of course the matrix elements of the correspond-
ing processes (such as Fig. 3c) can, in principle, be deter-
mined from photoproduction and deep inelastic data, and
may be taken into account. However the matrix elements
of Fig. 3c are not known to sufficient accuracy and it is
better to suppress the contributions of (6) by experimen-
tal cuts. The procedure is as follows. Recall that, due to
gauge invariance, inelastic vertices of the type p → X + γ
vanish like [19]

V (p → Xγ) ∝ q1t (7)

as the photon transverse momentum q1t → 0. Unfortu-
nately it is difficult to measure a leading proton with very
small transverse momentum, that is qt � 10−30 MeV. So
to take advantage of the behaviour of (7), it was proposed
[11] to select events with very small transverse momentum
of the lepton pair

pt ≡ | ql+t + ql−t | < 10 − 30MeV, (8)

in order to suppress N∗ and ∆ production. In such a case
the integral over the transverse momenta of the photons
in the Born cross section of Fig. 3a takes the form

∫
dq2

1t dq
2
2t q

2
1t q

2
2t

(q2
1t + t1)2(q2

2t + t2)2
δ(2)(pt − q1t − q2t) d

2pt, (9)

where the dominant contributions come from the regions
qit � pt. The values of the longitudinal components are

ti ≡ |ti,min| = x2
im

2
p, (10)

where xi are the fractions of the momenta of the incoming
protons carried by the l+l− pair, and mp is the mass of
the proton.

3.1 µ+µ− production

To identify muons (and to separate them from π± mesons)
it is necessary to observe charged particles after they have
transversed a thick (iron) absorber. It means that we con-
sider only muons which have a rather large transverse en-
ergy Et � 5 GeV. However, it is still possible to select
events where the sum of their transverse momenta is small,
pt < 30 MeV. In this case

xi 	 (2 − 3)Et/
√
s 	 10−3, ti 	 10−6GeV2, (11)

at the LHC energy. In such a configuration the main con-
tribution to the integral (9) comes from the domains q1t ≈
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pt, t2 � q2
2t � p2

t and q2t ≈ pt, t1 � q2
1t � p2

t . Per-
forming the q2

it integrations in these two domains gives
ln(p2

t/t2) and ln(p2
t/t1) respectively, and so the Born cross

section behaves as

dσ̂

dp2
t

∝ 1
p2

t

ln
(

p4
t

t1t2

)
(12)

In addition to the use of the small pt cut in order to
separate the elastic process (1) from the excitation process
(6), we can also exploit the different kinematics of the
processes. For example in [11] it was proposed to fit the
observed distribution in the muon acoplanarity angle φ in
order to isolate the elastic mechanism via its prominent
peak at φ = 0.

3.2 Absorptive corrections to l+l− production

To determine the effect of the absorptive, or re-scattering,
correction, we calculate diagram 3b with an extra loop in-
tegration over the momentum Q transferred via the
strong interaction amplitude shown by the “blob”. The
relative size of the correction, to the amplitude for lepton-
pair production of Fig. 3a, is

δ = (13)
(σinel/8π2)

∫
d2Qtd

2q1td
2ptσ̂(q1, q2; q1 +Q, q2 +Q) F (Q)∫

d2q1td2ptσ̂(q1, q2; q1, q2) F (0)
,

where F (Q) represents the collective effect of the appro-
priate proton electromagnetic form factors FN and the Q2

dependence of the strong interaction amplitude

F (Q) = FN (q2
1)FN (q2

2)FN ((Q+q1)2)FN ((Q+q2)2)ebQ2/2.
(14)

b is the slope of the pp elastic cross section, that is dσel/dt
∝ exp(bt). We can interpret the correction δ in terms of
S = 1−δ, where S is the “survival probability amplitude”
that the secondary hadrons produced in the soft rescat-
tering do not accompany '+'− production. Of course this
effect is due to the inelastic strong interaction only. Con-
sider the hypothetical case with pure elastic pp rescatter-
ing (at fixed impact parameter bt, that is for fixed partial
wave ' = bt

√
s/2). Then elastic rescattering only changes

the phase of the QED matrix element, M → M exp(2iφ�),
and does not alter the QED cross section σ = |M|2. Thus
we have to account only for the inelasticity of the strong
interaction, that is δ ∝ σinel as in (13)2. Throughout this
paper we do not discuss the effects of “pile-up” events.
Thus there will be an additional factor (W < 1) which
represents the probability not to include events with ex-
tra secondaries coming from an almost simultaneous in-
teraction of another pair of protons. Experimentally the
depletion due to such pile-up events may be overcome, for

2 An alternative, and more formal, explanation of δ ∝ σinel is
that we have to sum up multiple pp rescattering. On resumming
all the eikonal graphs, it turns out that one obtains (13) with
σtot − σel = σinel

example, by cleanly observing the vertex of µ+µ− produc-
tion.

The cross section σ̂ in (13) plays the role of the cross
section for the QED subprocess of γγ scattering through
the lepton box. For the absorptive process, the photons
have momenta q1 +Q and q2 +Q in the “left” amplitude
A shown in Fig. 3b, and q1, q2 in the “right” amplitude
A∗, which is not shown. Here we have assigned the ab-
sorptive effect to A. Actually the numerator of (13), and
the symbolic3 diagram 3(b), summarize a set of Feynman
graphs which describe the effects of the strong interaction
between the protons in the amplitude A. Then we have to
add the equivalent set of diagrams in which the rescatter-
ing effects occur in the amplitude A∗. The total correction
to (12) is therefore 2δdσ̂/dp2

t . The rescattering correction
is due to the imaginary part of the strong amplitude only.
The effects coming from the real part in A cancel with
those in A∗.

At first sight the largest absorptive effects, (13), ap-
pear to come from the largest values of Qt � 1/Rp, where
Rp is the proton radius; higher values of Qt are cut-off by
the proton form factor. However when Qt � q1t, q2t an
interesting suppression occurs. In this domain γγ → l+l−
occurs dominantly in the Jz = 0 two-photon state. The
projection of the orbital angular momentum on the lon-
gitudinal (z) axis is clearly zero, while the spin (which
originates from the photon polarisations) is described by
the tensor QµtQνt. After the azimuthal integration, the
tensor takes the form 1

2Q
2δ⊥

µν , leading to Jz = 0. If we
neglect the mass of the lepton, ml � Et, and higher order
QED corrections, then the Born amplitude, with Jz = 0,
vanishes4. This is a well known result, see, for example,
[23]. As shown in [24], the physical origin of the suppres-
sion is related to the symmetry properties of the Jz = 0
Born amplitude.

The “cross section” σ̂(q1, q2; q1 + Q, q2 + Q) for our
QED subprocess depends on the transverse momenta of
four virtual photons. The full expression for σ̂ is rather
complicated. However in the limit Et � q1t, q2t, Qt,ml, we
can integrate over the direction of the lepton transverse
momentum kt (with |kt| 	 Et), and the formula reduces
to the simple form

3 Indeed Fig. 3b is truly symbolic and must not be viewed
literally. The problem is that the strong interaction is not me-
diated by a point-like object, but must rather be viewed as a
multipheral or gluon ladder (Pomeron) exchanged between the
protons. It turns out that the dominant contribution comes
from four different configurations, corresponding to the pho-
tons being emitted either before or inside the Pomeron ladder.
Due to the conservation of the electromagnetic current, the
sum of all four contributions is embodied in (13) — the only
qualification is that when the photon is emitted inside the lad-
der, the form factor FN may have different behaviour at large
Qt. In our case, when Qt is very small, this effect is negligible

4 An analogous cancellation, which occurs on integration
over the azimuthal angle, was observed in QCD for light quark-
pair production pp → p+ qq̄ + p by Pumplin [20], see also [21,
22]
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σ̂ ∝ cosh(∆η)
E4

t cosh
4( 1

2∆η)

{[
[(Q+ q2, q1)(Q+ q1, q2)

+(Q+ q1, q1)(Q+ q2, q2) − (q1, q2)(Q+ q1, Q+ q2)]
]

/[
q2
1q

2
2(Q+ q1)2(Q+ q2)2

]}
(15)

where the notation (k1, k2) is used for the scalar product of
two transverse vectors, and where the rapidity difference

∆η ≡ ∣∣η(l+) − η(l−)
∣∣ . (16)

It is interesting to note that the dependence of the
cross section σ̂ on q1t, q2t and Qt follows directly from
the symmetry properties of the process. First, gauge in-
variance implies that σ̂ must vanish when the transverse
momentum of any photon goes to zero. That is σ̂ must
contain a factor q1tq2t(Q + q1)t(Q + q2)t. Next, it has
to be symmetric under the interchanges q1 ↔ q2 and
qi ↔ (Q + qi). Finally, as discussed above, in the limit
Qt � q1t, q2t, it must vanish after the azimuthal angular
integration of Qt has been performed. The only possibil-
ity to satisfy these conditions, to lowest order in Qt/Et

and qit/Et, is given by the expression in the small square
brackets in (15). To obtain the ∆η and Et behaviour,
shown in the first factor in σ̂ of (15), it is sufficient to
put Qt = 0 and to recall the well known pure QED cross
section5.

Recall that for µ+µ− production we select events with
small transverse momentum of the lepton pair, pt. Now if
pt = q1t −q2t 	 0, that is if Qt � pt, then the last factor,
{...}, in expression (15) of the absorptive cross section
simplifies to

σ̂ ∝
[
2(Q+ q1, q1)2 − q2

1(Q+ q1)2
]

[q2
1(Q+ q1)2]

2 , (17)

which, upon integration over the azimuthal angle of the
vector (Q + q1)t, gives zero. Therefore the main contri-
bution to (13) comes from values of Qt ≈ pt, and the
absorptive correction

δ ≈ σinel

8π
p2

t C. (18)

The coefficient C is numerically small for two reasons.
First, the integration over the loop momentum Qt kills
the logarithmic factor, ln(p4

t/t1t2), which enhanced the
original cross section (12) in the absence of absorptive
corrections. To see this, note that the log came from the
q2
t dq

2
t /q

4
t integrations, for both q1t and q2t, of (9), see (12).

However when Qt �= 0 the integrands are of the form
qt · (Qt + qt)/q2

t |Qt + qt|2, and there is no logarithmic
singularity for either qt → 0 or |Qt + qt| → 0. Second,
there is a suppression of C from cancellations which occur
after integration over the remaining azimuthal angles. For
example, if the invariant mass of the µ+µ− pair produced

5 We thank A.G. Shuvaev for using REDUCE to explicitly
check form (15) for σ̂

at zero rapidity is Mµµ = 20 GeV, then the value of the
coefficient C = 0.14, 0.13, 0.09 and 0.08 for pt = 5, 10, 30
and 50 MeV respectively. This leads to a negligible cor-
rection to the cross section (12), for example

2δ � 80mb
4π

p2
t C < 0.02% (0.13%) (19)

for pt = 10 MeV (30 MeV).
Note that the rescattering contribution of Fig. 3b is less

singular as q1t, q2t → 0 than the pure QED term of Fig. 3a.
Therefore the rescattering correction does not induce a
sharp peak at φ = 0 in the muon acoplanarity distribution.
Thus removing the excitation processes (6) by fitting the φ
distribution, will automatically suppress the rescattering
correction.

3.3 e+e− production

Unlike µ+µ− production, for e+e− production we do not
need to select events with electrons of large transverse
momentum pet. Providing the energy of the electrons E ∼
5 GeV, we may use, say, an electromagnetic calorimeter
to identify them. Therefore we may consider the small pet

domain where the e+e− production cross section is much
larger. The dominant contribution to the cross section
comes from the region of pet of the order of the electron
mass (pet � 1 MeV). As pet is small, we cannot neglect
Qt in the t channel electron propogator. As a consequence
the integral over Qt becomes super-convergent

∫
d2Qt|Qt + q1t| |Qt + q2t|

(Q+ q1)2 (Q+ q2)2 (|Q+ q1 + pe|2 +m2
e)
. (20)

It is informative to note the origin of this form. Due to
gauge invariance, the numerator vanishes when the pho-
ton transverse momenta |Qt + qit| → 0. The first two
factors in the denominator arise from the photon prop-
agators. Finally we have the factor due to the electron
propagator, with Q 	 (0;Qt, 0). Contrary to µ+µ− pro-
duction, where the lepton propagator was driven by the
large pt 	 Et of the muon, here the momentum Qt is not
negligible in comparison with pet and the dominant con-
tribution comes from the region Q2

t 	 m2
e < 10−6 GeV2.

Hence the expected absorptive correction due to strong
interaction rescattering is

2δ ≈ σinel

4π
Q2

t ∼ 80mb
4π

10−6GeV2 � 10−5 (21)

3.4 Conclusion on l+l− production
as a luminosity monitor

We see that both µ+µ− and e+e− pair production may
be used as monitor processes in high luminosity LHC col-
lisions. However we must employ special selection cuts on
the l+l− data. To suppress N∗ contamination we impose
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small transverse momentum pt of the lepton pair, more-
over for e+e− production we require the individual elec-
tron pet to be small. We also require the leptons to be suffi-
ciently energetic in order to identify them. Then the cross
section for l+l− production at the LHC (pp → p+l+l−+p)
can be calculated within pure QED and, importantly, we
may neglect the strong rescattering effects between the
protons up to 10−4 accuracy. Of course by requiring the
muons to have high Et we have the rather small cross sec-
tion of about 1 pb for the chosen kinematical cuts [11].
However here we may trace back the muon tracks and
determine the interaction vertex, and hence isolate the
interaction in pile-up events. So, in principle, µ+µ− pair
production, with high Et muons, may be used as a lumi-
nometer in very high luminosity LHC runs.

4 W and Z production
as a luminosity monitor

W and Z production in high energy pp and pp̄ collisions
have clean signatures through their leptonic decay modes,
W → lν and Z → l+l−, and so may be considered as
potential luminosity monitors [12]. A vital ingredient is
the accuracy to which the cross sections for W and Z pro-
duction can be theoretically calculated. The cross sections
depend on parton distributions, especially the quark den-
sities, in a kinematic region where they are believed to be
reliably known. Recent determinations of the W and Z
cross sections can be found in [25,26]. Here the situation
has improved, and next-to-next-to-leading order (NNLO)
predictions have been made6. The most up-to-date values
are reproduced in Fig. 4 [26] and Figs. 5,6 [25,26].

To estimate the accuracy with which the W and Z
cross sections are known, we start with Fig. 4. Figure 4 was
obtained using parton distributions found in LO, NLO and
NNLO global analyses of the same data set [26]. It is rele-
vant to summarize the contents of these plots. The predic-
tions labelled LO, NLO and NNLO can be schematically
written as follows

σLO = fLO ⊗ fLO

σNLO = fNLO ⊗ fNLO ⊗ [1 + αS,NLOK
(1)]

σNNLO = fNNLO ⊗ fNNLO ⊗ [1 + αS,NNLOK
(1)

+(αS,NNLO)2K(2)] (22)

where the label on αS indicates the order to which the β-
function is evaluated. The parton distributions f obtained
from the new global LO, NLO and NNLO analyses [26]
correspond to αS(M2

Z) = 0.1253, 0.1175 and 0.1161 re-
spectively. The NLO and NNLO coefficient functions K1,2

are known [27]. However, although the relevant deep in-
elastic coefficient functions are also known, there is only
partial information on the NNLO splitting functions. Re-
cently van Neerven and Vogt [28] have constructed com-

6 For a precise measurement, we should allow for W+W −

pair production and for W bosons produced via t-quark decays.
These can contribute about 1% of the total signal
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Fig. 4. The predictions of the cross sections for W and Z
production and leptonic decay at the Tevatron and the LHC
obtained from parton sets of LO, NLO and NNLO global anal-
yses of the same data set [26]. The cross sections labelled LO,
NLO and NNLO are as in (22) and the dashed line is the NLO′

prediction of (23). The band of the NNLO predictions allow for
the ambiguity in the NNLO splitting functions [28]. Also shown
are measurements obtained at the Tevatron [29,30]. The figure
is taken from [26]

pact analytic expressions for the NNLO splitting func-
tions which represent the fastest and the slowest possible
evolution that is consistent with the existing partial in-
formation. These expressions have been used to perform
global parton analyses at NNLO [26]. The uncertainty in
the NNLO predictions of σW and σZ due to the residual
ambiguity in the splitting functions is shown by the width
of the NNLO bands in Fig. 4. This amounts to about ±1%
uncertainty at the LHC energy, and less at the Tevatron.
For completeness, we note that the dashed lines in Fig. 4
correspond to the quasi-NLO prediction

σNLO′ = fNLO⊗fNLO⊗ [1+αS,NLOK
(1)+(αS,NLO)2K(2)],

(23)
which was the best that could be done before the work of
[28,26].

We see that the LO → NLO → NNLO convergence
of the predictions for σW,Z is good. The jump from σLO
to σNLO is mainly due to the well-known, large, O(αS)
π2-enhanced Drell-Yan K-factor correction, arising from
soft-gluon emission. The NLO and NNLO cross sections
are much closer and, if this was the end of the story, W
and Z production can clearly be predicted with sufficient
accuracy.
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Fig. 5. The solid squares and triangles are the predictions of
the NLO′ cross sections of (23) for W and Z production and
leptonic decay in pp̄ collisions at

√
s = 1.8 TeV obtained using

various NLO sets of MRST99 partons [25]. The open square
and small error bar are, respectively, the NLO and NNLO pre-
dictions of (22) using the MRST00 partons [26]. Also shown
are the experimental measurements from CDF [29] and D0 [30].
For ease of reference ±5% lines are shown about the MRST99
default prediction. We thankW.J. Stirling for this figure, which
combines results presented in [25,26]

However let us turn to Figs. 5 and 6, each of which
combine results presented in [25] and [26]. The solid
squares and triangles show the additional uncertainty in
the predictions for σW and σZ which arise from changing
the input information in the global parton analyses. The
two major uncertainties appear to be due to the value of
αS and to using different parton densities labelled by q↑
and q↓. The plots show the change in σW and σZ which
is caused by changing the value of αS(M2

Z) by ±0.005
respectively. The change in σW and σZ at the LHC en-
ergy is enhanced as compared to that at the Tevatron,
since DGLAP evolution is more rapid at the smaller x
values, x ∼ MW,Z/

√
s, probed at the higher energy. How-

ever, with our present knowledge of αS , the uncertainty
∆αS = ±0.005 is too conservative, and ±2% is a more
realistic uncertainty in σW,Z from this source at the LHC
energy.

The normalisation of the input data used in the global
parton analyses is another source of uncertainty in σW,Z .
The HERA experiments provide almost all of the data
used in the global analyses in the relevant small x do-
main. The quoted normalisation uncertainties of the mea-
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Fig. 6. As for Fig. 5 but for pp collisions at
√

s = 14 TeV

surements of the proton structure function F2 from the H1
and ZEUS experiments vary with Q2, but a mean value
of ±2.5% is appropriate. The q↑ and q↓ parton sets cor-
respond to separate global fits in which the HERA data
have been renormalised by ±2.5% respectively. For W and
Z production, of qq̄ origin, we naively would expect this
to translate into a ±5% variation in σW,Z , but the effect
of DGLAP evolution up to Q2 ∼ M2

W,Z is to suppress the
difference in the predictions.

In summary, allowing for all the above uncertainties,
we conclude that the cross sections of W and Z produc-
tion are known to ±4% at the LHC energy, and to ±3%
at the Tevatron. A major contributer to this error is the
uncertainty in the overall normalisation of the H1 and
ZEUS measurements of F2. The normalisation may be
made more precise by experiments in Run II at the Teva-
tron.

5 Parton-parton luminosity

In some circumstances it is sufficient to know the parton-
parton luminosity, and not the proton-proton luminosity,
see, for example, [12]. Of course if the proton-proton lumi-
nosity is known then the parton-parton luminosities can
be calculated from the parton distributions determined in
the global parton analyses. However in this case we rely on
the normalisation of experiments at previous accelerators
which yielded data that were used in the global analyses.

Thus it may be better to monitor the parton-parton
luminosities directly in terms of a subprocess which can
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Fig. 7. Feynman diagrams driving γγ production in pp colli-
sions

Fig. 8. Contributions to the diphoton pt spectrum from the
diagrams of Fig. 7 in pp collisions at

√
s = 14 TeV. Each photon

is required to have transverse momentum pγt > 20 GeV and
rapidity |ηγ | < 1. The photons are required not to lie within
the same η − φ cone of radius 0.4. We thank M.A. Kimber for
this figure

be predicted theoretically to high precision. The best ex-
ample is inclusive W (or Z) boson production, which is
predicted up to two-loops, that is to NNLO [26]. The ac-
curate observation of W (or Z) production at the LHC
may therefore be used to determine the quark-antiquark
luminosity7. Then the gluon flux, for example, may be de-
termined from the global parton analysis which already is
made to describe the measured W (or Z) cross sections.
One advantage of this technique is that, for most LHC ap-
plications such as the search for new heavy particles, we
need to consider a smaller interval of DGLAP evolution
than has been the practice hitherto.

Other ways to constrain the gluon-gluon luminosity are
to study tt̄ production or the production of two large pt

prompt photons. The leading order subprocess is qq̄ → γγ.
However at LHC energies the gg → γγ box diagram gives
an important contribution. The two diagrams are shown
in Fig. 7. The relative contributions are shown in Fig. 8 as
a function of the transverse momentum of the photon pair
pt = qγ1t +qγ2t for the case when each photon has trans-
verse momentum qγt > 20 GeV and rapidity |ηγ | < 1. We
see that in this kinematic domain the gg → γγ subprocess
gives a major contribution due to the higher gg luminosity.
However there is a strong possibility of contamination by

7 At first sight the qq̄ luminosity in a given x1, x2 bin may
be obtained by observing the number of W events in that bin
and dividing by the qq̄ → W cross section. However at NLO
we include qq̄ → Wg, qg → Wq etc., so the only possibility is
to use the new W data to determine the qq̄ luminosity within a
global parton analysis. To do the same at NNLO we would re-
quire the NNLO expression for dσ/dy�, where y� is the rapidity
of the decay lepton

Fig. 9. Higgs production via Pomeron-Pomeron fusion in pp
collisions

the subprocess gq → γγq, unless severe photon isolation
cuts are imposed, see, for example, [1].

So far we have considered conventional parton dis-
tributions a(x, µ2) integrated over the parton transverse
momentum kt up to the factorization scale µ. However
many reactions are described by unintegrated distribu-
tions fa(x, k2

t , µ
2) which depend on both kt and the lon-

gitudinal momentum fraction x carried by the parton. In
principle, unintegrated distributions are necessary for the
description of all processes which are not totally inclu-
sive. In these cases, instead of the conventional QCD fac-
torization, we have kt factorization [31]. Indeed, for some
processes, after the specific integration over kt, the con-
ventional ‘hard’ QCD factorization may be destroyed.

The unintegrated quark-quark luminosity may be de-
termined, for example, by observing the kt distribution of
W (or Z) bosons or Drell-Yan pairs. At leading order, the
kt-dependence of cross sections is given by the convolution

dσ

d2kt
∝

∫
d2p1

p2
1

d2p2

p2
2

δ(2)(p1 + p2 − kt) fq(x1, p
2
1, µ

2)

×fq̄(x2, p
2
2, µ

2). (24)

At large kt � ΛQCD, to leading ln kt order, the dominant
contribution comes from either the domain p1 ≈ kt, p2 �
kt or the domain p2 ≈ kt, p1 � kt. It is natural to choose
the factorization scale µ ≈ kt. Then the kt distribution
takes the simple form [32]

dσ

d2kt
∝ [

x1q1(x1, k
2
t ) fq̄(x2, k

2
t , k

2
t )

+x2q̄2(x2, k
2
t ) fq(x1, k

2
t , k

2
t )

]
, (25)

since at leading order
∫ k2

t dp2

p2 fa(x, p2, k2
t ) = xa(x, k2

t ). (26)

Moreover diffractive processes (with one or more rapid-
ity gaps) are described, in general, by skewed parton dis-
tributions. An example is the double-diffractive exclusive
Higgs boson production, described by the Feynman dia-
gram shown in Fig. 9. This process is described by skewed
gluon distributions with x1 �= x′

1 and x2 �= x′
2 [33,34].

Sometimes even the “skewed” parton flux can be mon-
itored directly via another process with similar kinemat-
ics. For example, we may monitor the effective Pomeron-
Pomeron luminosity for Higgs production of Fig. 9 by mea-
suring double- diffractive dijet production in the region in
which the transverse energy of the jets (Et) is of about
half that of the Higgs mass (Et ∼ MH/2) [34,22].
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Fortunately most of the physically relevant processes
are described by skewed distributions with xi � 1. In
these cases the skewed distributions may be reliably re-
constructed from the known conventional parton distri-
butions [35].

6 Conclusions

We have studied the theoretical accuracy of the main three
proposals for determining the luminosity of the LHC pp
collider — namely using forward elastic data, lepton-pair
production and W or Z boson production. The desired
goal of a measurement to within ±5% seems theoretically
attainable.

We focused on potential shortcomings of each method.
First, we demonstrated that the t dependence of the elas-
tic cross section is well under control and, in fact, it turns
out that it can be safely approximated by a simple expo-
nential in the region |t| < 0.05 GeV2. For lepton-pair pro-
duction we evaluated the corrections to the cross section
arising from the strong interactions between the protons.
We showed that in the relevant kinematic domain, with
small transverse momentum of the produced lepton-pair,
these effects are negligible. Hence a pure QED calculation
of the cross section will give sufficient accuracy.

The cross sections for W and Z production can now
be predicted to NNLO, which at first sight would seem
to provide an LHC luminometer with ±1% accuracy, see
Fig. 4. However the uncertainties in the input to the global
parton analyses mean that the error could, conservatively,
be as large as ±4%. The uncertainty may be reduced if
we work in terms of quark-antiquark luminosity, which is
relevant in some future applications of the LHC.

Finally, we note that luminosity determinations based
on the measurement of the forward elastic cross section
and (most probably) on two-photon e+e− production can
only be made in low luminosity runs, and require dedi-
cated detectors and triggers. On the other hand, the mea-
surement of W or Z and two-photon µ+µ− production
may be performed at high luminosity with the central de-
tector and with standard triggers.
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